PZT & CNT based SHM Systems for Impact Detection & Localization

Seth S. Kessler, Ph.D. | President/CEO

Metis Design Corporation | 15 July 2014

structural health monitoring multi-functional materials lean enterprise solutions

MD7-Pro Digital SHM System

- Metis Design developed & validated system through SBIR funding
 - > AF03-T017 Intelligent SHM Infrastructure (hardware)
 - > AF06-097 Adaptive Damage Detection (software)
 - **➤ USS Independence (N10-T042)**
 - > Triton UAS (N12-125)
 - Blackhawk (N12-T007, COST-A & others)

- System focus on low mass, low power, expendability, retro-fit
 - novel sensor/algorithm design for large-area coverage
 - distributed intelligence on a digital sensor bus
 - > multifunctional capabilities at each node location

MD7-Pro Structural Sonar

- Analog sensor base for impact/damage detection
- Greatly reduces typically required sensor density
- 1 PZT actuator & 6 PZT sensors in small package
- Facilitates both active/passive beamforming

MD7-Pro Acquisition Node

- Digital node for distributed acquisition & local computation (15 g mass)
- Greatly reduces mass of cables & centralized hardware, eliminates EMI
- Facilitates both active (guided wave) & passive (AE) detection methods
- 8 breakout analog & digital channels + built-in triaxial accelerometer & temp

metis design

MD7-Pro Acquisition Node + Structural Sonar

MD7-Pro Low Speed Channel Validation

MD7-Pro Accumulation Node

- Digital node for 64 GB data accumulation & global processing (20 g mass)
- Can support up to 100 Acquisition nodes on serial bus
- Hosts complex C++ embedded algorithms w/FPGA & 2 GB RAM
- Gigabit Ethernet + USB access to data, programmable interface

Data Analysis & Reconstruction

Each node processes phase-coherent, location independent "sonar-scan"

color represents # of standard deviations above mean of damage-free data

Performance Evaluation

- Single MD7 node detection on 2mm thick Al plate with 20 rivets
 - > 36 impact events of ~20 J of energy from falling 1 cm semi-spherical mass
 - half of impact on each side of rivet line
- Hybrid passive/active detection demonstrated
 - > 36 passive/active auto-triggered measurement following impact events
 - 6 manually triggered active measurements with a fastener removed
 - > 36 manually triggered active measurements without any impact or damage

Passive Mode Impact Detection Results

- Results collapsed to a single scatter plot of raw localization prediction by re-centering all impacts to a common origin
 - > 100% detection (36/36) following impact events
 - no false triggers recorded at pre-set threshold levels
 - mean error for AE localization ~ 25 mm
 - > predictions cluster relatively closely near origin relative to size of plate
 - > no trend observed for results obtained on one side of fastener line vs other

Active Mode Impact Detection Results

- Results collapsed to a single scatter plot of raw localization prediction by re-centering all impacts to a common origin
 - > 100% detection (36/36) of ~0.5 mm deep dents following AE detection
 - > no false positives indicated (0/36) following non-impact scans
 - mean error for GW localization ~ 50 mm
 - > more scattered than AE, but predictions still group relatively close to origin
 - > no trend observed for results obtained on one side of fastener line vs other

Active Mode Fastener Detection Results

- Results collapsed to a single scatter plot of raw localization prediction by re-centering all impacts to a common origin
 - **▶ 100% detection (6/6) of hand-tightened fasteners**
 - > no false positives indicated (0/36) following non-loosened scans
 - mean error for GW localization ~ 5 mm
 - least amount of scatter due to massive local stiffness change
 - essentially translates to localization within ±1 fastener position

Conformal Multi-functional Assemblies

- Conformal assemblies for composite & metallic host structures
 - > central carbon nanotube (CNT) layer is core to these properties
 - surrounded by electrically insulating layers (film adhesive and/or GFRP)
 - > selective electrodes integrated to steer current flow
- Little impact to physical structure, 100 200 µm & 5 10 g/m²
 - > can be co-cured with composite laminate
 - > can be installed over composite or metallic skin in secondary process
- Enable multi-functional capabilities: anti-icing, health monitoring

Structural Health Monitoring (SHM)

- SHM improves reliability, safety & readiness @ reduced costs
 - > sensors add weight, power consumption & computational bandwidth
 - > cables add weight, complexity, as well as durability & EMI concerns
 - > scaling SHM for large-area coverage has presented challenges
- Advantages of proposed CNT-based SHM methodology
 - > CNT "sensors" can actually improve specific strength/stiffness of structure
 - > can use thinner/lighter electrodes such as metal-mesh or direct-write
 - > simple to scale over large structure, maintains good local resolution

Fine Grid Impact Results (AF08-T023)

- Damage shifts CNT links in affected zone, increases resistivity
 - > nearly linear increase in % resistance change with impact energy
 - < 1% change in resistance away from impact zone</p>
- Surface & sub-surface images produced in post-processing
 - > 20 joule impact caused ~10-20% resistance change (no visible change)
 - 40 joule impact caused ~20-30% resistance change (no visible change)
 - > 60 joule impact caused ~40-60% resistance change (no visible change)

metis design

Sparse Electrode Notch-Cutting Tests (N111-067)

- Detection sensitivity strong function of CNT network aspect ratio
 - > 2400 mm² CNT w/160 mm² damage yields ~25% in resistance increase
 - > same damage in 1 m long strip of same width would yield ~2% change
 - ➤ 10 mm² damage would still be over noise floor
- Simple 2D network resistor model in good agreement with data

Sparse Electrode Impact Results (N111-067)

- Impacts below threshold of 30 J had <0.25% change in resistance
 - > impacted surfaces exhibited >1% change in resistance after 30 J impacts
 - ➤ majority of specimens showed increase of ~15% after 110 J impacts
 - > possible to increase CNT monitoring patch length to 1 m with 0.1% change
- Variability due to impact events, could be observed in "dents" too

Impact Test Acoustic Response (N111-067)

Sparse Electrode 4-Point Bent Results Under Load

- Resistance is proportional to strain for low displacement
 - > load/displacement curves for all specimens are in close agreement
 - > tensile-side resistance increases due to CNT network being stretched-out
 - > compressive-side resistance decreases due to CNT being pushed together
- Permanent resistance increase after 25 mm deflection (>400 N)

Unloaded Bend Test Results (N111-067)

1m CFRP Submarine Propeller Test Specimen

4-Point Bend Results: Loaded vs Unloaded Results

- Same trends observed in 1 meter specimen as smaller coupons
 - > tensile-side resistance increases linearly with enforced displacement
 - > compressive-side resistance decreases linearly with enforced displacement
- Permanent resistance increase after 25 mm deflection (>4 kN)

Effect of CNT on Laminate Mechanical Properties

- 4 sets of ASTM tests performed professionally by testing house
- CNT surface layer statistically has no effect on any mechanical stiffness or strength properties in normal operating strain ranges

Impact ASTM-D256-10

Izod Specimens	Average Strength
Baseline	33 ft-lbs/in
CNT on surface	37 ft-lbs/in

Technical & Business Contact

Seth S. Kessler, Ph.D. • President/CEO • Metis Design Corporation 617-447-2172 x203 • 617-308-6743 (cell) • skessler@metisdesign.com metis design